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Effect of repulsive and attractive interactions on depletion forces in colloidal suspensions:
A density functional theory treatment
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The author employs density functional theory to study colloidal interactions in solution. Hardcore Yukawa
potentials with soft tails, either repulsive or attractive, are used to model colloid-solvent and solvent-solvent
interactions. We analyze the effect of these interactions on the solvent-mediated potential of mean force
between two colloids in solution. Overall, theory is shown to be in good agreement with recent simulation data.
We use the theory to study the density dependence of the colloid-colloid second virial coefficient.
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[. INTRODUCTION makes the effective colloid-colloid PMF more repulsive.
While the addition of a soft repulsion between depletants
Numerous systems of biological and technological interenhances the accumulation repulsion between colloids, the
est can be modeled as spherical colloidal particles dispersexhme effect can be achieved by adding a depletant-depletant
in a solution of smaller colloidal particle@epletants [1]. attraction, in which case the two attractive interactions
Understanding of the phase behavior and stability of suclicolloid-depletant and depletant-deplejaptoduce a mutu-
mixtures is of primary importance for the development ofally amplified enhancement of the depletant density around
various industrial applications. A common method of con-the colloids[16].
structing phase diagrams of colloidal dispersions involves While computer simulations provide a valuable tool for
adopting the McMillan-Mayer approach, whereby the realobtaining exact results for the structural properties of colloi-
two-component mixture is modeled as a pseudo-onedal dispersions, these calculations are rather time consuming.
component system, with colloidal particles interacting undef~or the purpose of exploring the large parameter space cov-
the effective potential of mean forg®MF) induced by the ered by the model interaction potential parameters, it would
depletant. The particular structure of the depletant-mediatede more practical to employ a theoretical method to compute
PMF is quite sensitive to the character of colloid-depletanthe PMF. Louiset al. [16] have assessed the accuracy of two
and depletant-depletant interactiofi2]. In real systems, such methods by comparing theoretical results with com-
these interactions can be easily adjusted by varying such pguter simulation data. The first method is based on the Kirk-
rameters as salt concentration or surface charge, whicWwood superposition approximatigqiSA) [6,17], where the
makes it possible to modify the effective PMF between theanisotropic depletant density profile induced by two colloids
colloidal particles. Accordingly, it is important to develop is approximated by the product of isotropic density profiles
accurate theoretical methods for calculating the effectivearound individual colloids(the latter were taken directly
PMFs that would be suitable for various forms of interpar-from computer simulations It was found that the KSA ap-
ticle interaction potentials. proach yielded accurate results in the case of repulsive
While the majority of previous theoretical studies of col- colloid-depletant soft interactionévhen the local density
loidal dispersiong3—9] have focused on the hard-sphere in-around colloids was depletgdut broke down for attractive
teractions(both additive and nonadditiyeseveral workers interactions(when local density was enhanged-urther-
[10-15 have analyzed the behavior of the colloid-colloid more, it is well establishe@g], that the quality of KSA de-
PMF when either attractive or repulsive soft interactions arereases with increasing solvent packing fraction. The other
added to hard-core repulsions. A particularly extensive studyheoretical method tested by Louét al. is based on the
was performed by Louist al. [16] who employed a micro- density functional theoryDFT). They considered a particu-
scopic model based on hardcore Yukawa potentials, whickar implementation of DFT, where the hardcore Yukawa mix-
allowed them to consider various combinations of repulsiveure with repulsive/attractive soft interactions was mapped
and attractive colloid-depletant and depletant-depletant sofinto an effective hard-sphere mixture, for which highly ac-
interactions. These authors have performed molecular dyeurate DFT methods are availaljig. It was found that the
namics(MD) simulations to obtain exact results for the PMF mapping onto nonadditive mixtures performed well for re-
for each of the systems studied. The following general trendpulsive depletant-depletant interaction, but underestimated
were observed. Adding a colloid-depletant soft repulsion enthe effective PMF for the attractive case. The performance of
hanced the depletion attraction between the two colloidshe mapping procedure was especially poor when both
(which was further enhanced by the addition of depletantcolloid-depletant and depletant-depletant interactions were
depletant soft attractionsince both these interactions reduceattractive, since the hard-sphere mapping could not capture
the depletant density in the vicinity of the colloids. Con-the nonlinear mutual enhancement of the depletant density
versely, adding a colloid-depletant soft attraction results irleading to “repulsion through attractiofl6]. Thus, neither
the accumulation of the depletant around the colloids, whiclof the theoretical methods tested was in quantitative agree-
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ment with simulation for all systems studied, which high- 0, r=og

lights the necessity for developing alternative theoretical ap- beclr) = - '

proaches to treat colloidal mixtures with soft interactions.
Quite recently, a novel method was proposed to study The total potential of mean for¢g®MF) between two col-

structural properties of systems where both hardcore repuleidal particles in solution can be written as the sum of the

sions and soft tail attractions are presgi8]. The method is  bare potential and the solvent-mediated PMF,

formulated within the DFT framework based on the weighted

density approximatiofWDA). The excess free energy func- D) = pedr) +WIr). (4)

tional is split into two terms corresponding to repulsive andThe calculation of the solvent-mediated PMEr) is the

attractive interactions. In addition, two separate weightingnain goal of the present study.

functions and weighted densities are introduced for repulsive |y order to obtainW(r), we definep(f,R) as the condi-

and attractive terms. The method was applied to study polygonal probability of finding a solvent particle dtgiven that

mer density profiles at surfaces and was found to be in gooine colloid is at the origin and the other is locate®awith

agreement with simulations. We note that such approacfj . L .
would be ideally suited for systems based on the Yukaw IS ‘."ef"."t'o.”’ the solvent mgd|ated PMF petweep the two
colloids is given by the following exact relatiof%7]:

model potentials, which naturally split into a hardcore repul-

sive wall and a soft tai(either repulsive or attractiyeFur- *

thermore, a closed analytical form was recently obtained for W(R) :f F(R)AR', ©)

the Yukawa excess free energy functiofa®], which was R

shown to be highly accurate for both repulsive and attractivgyhere the excess mean foré&R), is given by

Yukawa tails[11,19. In the present work, we employ the

DFT method of Miilleret al. [18] to study colloidal interac- . N

tions in hardcore Yukawa mixtures. We ghow that theory is in F(R) = _f drfV ¢edr) -R]p(T;R), (6)

quantitative agreement with simulations for all systems stud- R R

ied by Louiset al. [16], except for the one involving both whereR is the unit vector alongr.

colloid-depletant and depletant-depletant attractions. We also |t is clear from the above tha is completely determined

perform model theoretical calculations for a wide range Ofpy the anisotropic solvent density profile induced by the two

depletant packing fractiongot studied in the simulations  cqjioids. By treating the two colloidal particles as a source of

and compute the density dependence of the colloid-colloiyn external field, we can employ the standard DFT formalism

second virial coefficient. . . to obtain the equilibrium density profile of the fluid in an
The remainder of the paper is organized as follows. INexternal potential. The starting point of the DFT treatment is

Sec. Il we specify our microscopic model and outline thethe expression of the grand free enei@y,as a functional of

DFT approach employed to compute the interaction betweeghe solvent density profile. The minimization 6f with re-

two dilute colloidgl particles in §o|ution. In Seg. 11 We Com- gpect top(F, R) yields the equilibrium solvent density distri-
pare our theoretical results with computer simulations ang, tion.

perform model studies of effective interactions between col-  The functionalQ is related to the intrinsic Helmholtz free

, <o

loidal particles. In Sec. IV we conclude. energy functionalF, via a Legendre transform,
Il. MICROSCOPIC MODEL AND DENSITY Q[p(r,R)] =F[p(F,R)] + f dr p(F,R)[ pexdF,R) — ],
FUNCTIONAL THEORY

We consider two spherical colloidal particles present at @)
infinite dilution in a solvent composed of spherical mol- whereu is the chemical potential and.,(f',R) is the exter-
ecules. The diameters of colloidal and solv¢depletant  nal field, which in the present case is due to the interaction of
particles are denoted by.. and ogs respectively. The sol-  i4e solvent with coll0idSpey (T, R) = dhod 1) + dod | T~ |§|)_
vent particles interact via isotropic pairwise potential of the 114 intrinsic Helmholtz free energy functional can be

hard-sphere Yukawa form, separated into ideal and excess parts,

¢ss(r):{fss"ssexﬂ‘ KAl ol r=os ) FLo(F.R)] = Flpf R + Felp(F,R)], ®
o, r< . . . .
7ss with the ideal functional known exactly,

The colloid-solvent potential has the same functional

form, but with different parameters, Fulp(F.R)] :ﬁ_lf dF p(F,R{IN[A%(F,R] -1}, (9)
_ ) €csUcs exfgd— ke —oe)llr, 1= o, > _ _
bedr) = -, [ <o ) \ivEe_FeA is the thermal de Broglie wavelength angf®
=kgT.

whereos=(0c+ s/ 2. Following the earlier DFT study of systems with repulsive

For the bare interaction potential between the two colloi-and attractive interactionfl8], we decompose the excess
dal particles we take the hard-sphere form free energy functional into contributions arising from harsh
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hard-sphere repulsions and soft Yukawa tail interactjtims  the weighting functionsw,{r) and w;(r). For the hard-
latter can be either repulsive or attractive depending on thephere part of the free energy, we use the Carnahan-Starling

sign of es5in Eq. (1)]: equation of state,
Fedp(F,R)] = Fpd p(r,R)] + Fai[ p(F,R)]. (10) f 4y— 3P
= 17
In the present study we obtain boffg and F,; within the Alndp) (1-7?’ (7
weighted density approximatidi20], 3, ) _
where n=mpo/6 is the solvent packing fraction. For the
> o) = > > contribution to the free energy arising from the Yukawa tail,
Frdp(F.R)] f df p(F.R) frspnd7.R)), (19 we use an approximate analytic expression derived bydéuh

al. [19], which was shown to provide very accurate free en-
ergy results both for repulsive and attractive hard-sphere
. .. . Yukawa fluids[11,19. The expression fof,; obtained by
Frailp(",R)] :f dr (7, R) frai(prail(T,R)), (120 Duhet al.[19] is reproduced in the Appendix.

Regarding the choice of the weighting functions, we fol-
wherefpdp) andfy;(p) are the excess free energies per pardow the earlier density functional study, where the range of
ticle (evaluated at the fluid densip) arising from the hard- w,{r) was taken to be the solvent hard-sphere diameter,
sphere repulsions and soft tail interactions, respectively. Thehile the range ofv(r) was identified with the range of the
weighted densitiepndr, R) andpy;(r',R) are defined accord- tail of ¢.{r). Accordingly, we take the simple form for

and

ing to W),
—_— (> — 27 =7 Z_ 2 3
pndMR) fdr p(F ,Rwpd(|F = ") (13 Wng(F) = ——5 O(0ss= 1), (18)
Ao
and . - .
where O(r) is the Heaviside step function. Fav(r) we
- . o o I loy the following form:
Pl R) = f dF p(F' Rwg(F =), (14)  SMPIoy e folowing form
. _ . o . _ D)
with the weighting functions satisfying the normalization Wegit(F) = = : (19
condition 47Tj dr r2¢g(r)
0
fdrwhs(r)zfdrwta”(r)zl. (15 where
We note that the form of the hard-sphere component of the dsdr), r=og
excess free energy functional, as given by 84), is due to bail(r) = _ S (20)
Tarazond20]. While more accurate functionals are currently $sd0s9, T < Oss

available, such as the one based on the Rosenfeld’s funda- Wwith the above choices for free energy components and
mental measure theof¥MT) [21], for the sake of simplicity weighting functions, we solve Eq16) iteratively. Taking

we have restricted ourselves to the Tarazona form. A comadvantage of the cylindrical symmetry of the problem, the
parison of our theoretical results with simulation and withanisotropic solvent density profile is constructed on a two-
FMT-based DFT calculations of Rottt al. [9] appears to  dimensional(r, 6) grid, and the convolution integrals in Eq.
indicate that the Tarazona functional is adequate for our pur(-16) are performed by expanding the Corresponding func-

poses. _ tions in Legendre polynomials. We found that using 200
The minimization of the grand free energy yields the fol- polynomials was sufficient to obtain converged results. The
lowing result for the equilibrium solvent density profile:  step size along the radial coordinate of the grid was taken to

be 0.0%, and the total number of points along this coordi-
nate was taken to be 500. We note that the central point of

o s — our grid(r=0) is located at the center of one of the colloidal
"'f d” p(7", RIWnd [ = 7| frlond 7, R)) particles. Accordingly, the grid points with=o yield the
contact values of the solvent density. This is important, be-
cause in the absence of the Yukawa tail in the colloid-solvent
interaction potential, the depletion forpgiven by Eq.(6)] is
entirely determined by the contact density.

p(FiR) = pp ext] — Blebedr) + e [F = R]) + F1o(pnd 7. R))

+ frail(pran(7, R) + J di’ p(F", R)We(|F = 7))

X fiain(Prail(", R) = frdlpw) = po Fidpp) = frait(iop) Once the anisotropic solvent density profile was calcu-
—pof( )}] (16) lated, the excess mean force between two colloidal particles
Poraill P/ was obtained from Eq6), and the solvent mediated PMF
wherep, is the bulk solvent density and =df/dp. was computed from Eq5). In the next section, we compare

In order to computep(r';R) from Eq. (16), it remains to  our DFT results with previously published computer simula-
specify the free energy componerfts(p) and fi;;(p), and  tions, and present results of our model calculations.
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TABLE |. Parameter combinations for interaction potentials. 3
System Béps Beéss q;\
|:\ 0 System1 (MD)
1 0 0 \ System1 (DFT)
2 0 2.99 2t “}i\ O System 2 (MD)
———- System 2 (DFT)
3 0 -0.996 - nh o System 3 (MD)
4 0.82 0 2 qq —-=-- System 3 (DFT)
5 0.82 2.99 <
6 0.82 -0.996 "
7 -0.82 0
8 -0.82 2.99
9 -0.82 -0.996
0 .
3 4 5
IIl. COMPARISON OF THEORY WITH SIMULATION /o

AND MODEL CALCULATIONS

FIG. 1. Normalized density profiles of solvent particles around a
In order to test the accuracy of the DFT treatment prejngie colloidal sphere for systems 1-3, with model potential pa-
sented in the preceding section, we compare our theoretic@meters listed in Table I. Symbols are from the published simula-
results with recently published computer simulation data ofjon data of Louiset al. [16], and lines are from the DFT method.
Louis et al. [16] These authors have performed MD simula-

tions of.effecltive force; between two di!ute spherical CO”.Oi'tive interactions, which makes it favorable for the solvent to
dal particles in a spherical solvent, with interaction pOtent'aIScluster near the colloid

given by Eqs(1)«(3). The potential parameters used in the We now turn to the discussion of excess mean force and

S|mu_lat|ons are listed in Table |. _Three _ch0|ces for bof[hsolvent mediated PMF between two colloidal particles in so-
colloid-solvent and solvent-solvent interactions were Cons'dlution The simulation[16] and theoretical results for the

ered:_pure hard—sphere_ repulsion, a _hard—sphere re"”"gicfarces, are shown in Figs. 4—6, while the PMF results are
combined with a repulsive Yukawa tail, and a hard-spherepresented in Figs. 7-9. Once again, DFT is in good agree-

repulsion combined with an attractive Yukawa tail. All pos- ent with simulation, with the only significant discrepancy

sible combinations of these choices yield nine systems liste bserved for system 9, where theory does not capture the
in Table 1. The values of remaining parameters were fixed aﬁ)ng range nature of tﬁe repulsive force between two col-
follows: o¢c=505s Kkss=3/05ss andres=1.2/ocs The solvent  nigs and; as a result, somewhat underestimates the magni-
packing fraction in all the simulations was set 0 b§ g of the corresponding repulsive PMIBwer panels of
=mpposd 6=0.1. ) , Figs. 6 and 9, respectivelyThe general trends predicted by
We start by calculating thespherically symmetricsol- — yhe simylation and successfully reproduced by the theory are
vent density profile aroundsinglecolloidal particle for each 54 f5j10ws. For a given solvent-solvent interaction, the addi-
of the nine model systems. Our theoretical results togethef,, of the soft repulsive tail to the colloid-solvent interaction

with the simulation dat416] are shown in Figs. 1-3. One ophances attraction between the two colloids, while an at-
sees that the solvent density profiles yielded by the DFT are

in good agreement with the simulation for all nine systems 2
studied. In particular, DFT successfully reproduces all the

trends predicted by the simulation regarding the effects of )
the colloid-solvent and solvent-solvent soft repulsive and at-
tractive interactions on the accumulation of the.solvent par- },\ ———- System 5 (DFT)
ticles near the colloidal sphere. Namely, for a given colloid- ] o System 6 (MD)
solvent interaction, a soft repulsive solvent-solvent R —-—- System 6 (DFT)
interaction(in addition to the hard-sphere repulsjaesults

in an additional accumulation of the solvent near the colloid,
while solvent-solvent attraction produces an opposite effect.
The only exception is observed for system 9, where both
colloid-solvent and solvent-solvent interactions contain an
attractive tail. In the latter case, the contact value of the
solvent density profile at the colloidal surface is still smaller
compared to the hard-sphere solvéntagreement with the
trend discussed aboyébut there is a pronounced accumula- 0 3 " s
tion of the solvent in theecondsolvation shell. As discussed /o,
by Louiset al.[16], this effect is due to the mutual nonlinear

amplification of colloid-solvent and solvent-solvent attrac- FIG. 2. Same as Fig. 1, but for systems 4—6.

© System 4 (MD)
System 4 (DFT)
D System 5 (MD)

-

p)/p,

031402-4



EFFECT OF REPULSIVE AND ATTRACTIVE.. PHYSICAL REVIEW E 70, 031402(2004

4 0
b gl
d’\ o System 7 (MD)
\ System 7 (DFT) =2}
3| .;', o System 8 (MD) | sl O System 4 (MD)
4 -——- System 8 (DFT) — System 4 (DFT)
q © System 9 (MD) -4
! —-—-- System 9 (DFT) 0 oo
& 3 o1
= 2 ] 1
k)
& 5 2}
= 3l
a -3 0 System 5 (MD)
—4r System 5 (DFT) ]
1t -5 + b
-1}
2r 0 System 6 (MD)
0 3 . e , System 6 (DFT)
1/G,, . . . A
5 6 7 8 9 10

FIG. 3. Same as Fig. 1, but for systems 7-9.
. . . . . . . FIG. 5. Same as Fig. 4, but for systems 4—6.
tractive colloid-solvent interaction increases colloid-colloid

repulsion. The former effect is due to the standard “attraction . .
due to depletion” mechanism, since a repulsive Cc)l|oid_solvent-:solvent attraction, which generally depletes the sol-

solvent potential results in depleted solvent density around€Nt density at the colloidal surface, would induce a deple-
the colloids(see Figs. 1-8 which enhances the attraction tion attraction between the colloids. This is indeed observed

between them. By contrast, the accumulation of the solvenflOr the cases of hard sphere and “hard sphere plus soft repul-

around “attractive” colloids leads to steric repulsion ThesSion” colloid-solvent interaction potentials. The exception to
same effect can be achieved for a given colloid-solvent in

this rule is provided by system 9, where colloid-solvent in-
teraction by adding a soft repulsive component to theteraction is attractive. As already discussed above, the non-

solvent-solvent interaction, which again leads to the soIvenlfn?aar [nuf[t'al ?mphﬁcatéon of coI|I0|d-tsoIvent a|n?- sol\_/enttk—]
accumulation near the colloidal surface and the concomitant®VeNt atltractions produces solvent accumulation in the

steric repulsion between the colloids. In the latter case, th econd solvatlon_ shell aro_und the_coll0|ds, _Wh'Ch’ In turn,
solvent mediated PMF develops an oscillatory structur eads to an additional steric repulsion seen in the simulated

(clearly seen in the middle panel of Fig), &vhich would PMF(Iower panel ‘.Jf Fig. Q_Theory does not quite capture
become even more pronounced at higher solvent densitieg]'s subtle effect, since it misses the long-range repulsive tail

By the same argument, one would expect that an additiondl’ the excess mean forgiower panel of Fig. &
Having ascertained the accuracy of the proposed DFT

o y treatment, we now use it to perform model calculations of
of oo < colloidal interactions at higher solvent densiti@st studied
-1t o Systeml (MD) | 3
System 1 (DFT)
2 o : o o System 7 (MD) |
{ —— System 7 (DFT)
1 L 4
g or
L -1} 0 System 2 (MD) 09
=2 System 2 (DFT) 3 1
o O System 8 (MD)
-3 5 27 —— System 8 (DFT)
g ]
1! 0 b
O System 3 (MD)
—— System 3 (DFT)
(o} ! ]
2 . . © System 9 (MD)
5 6 7 0 —— System 9 (DFT) |
r/O'“ 2 o
I . . .
FIG. 4. The dimensionless excess mean force between two col- 0 5 6 7 Py 9
loidal particles for systems 1-3. Symbols are from the published t/o,,
simulation data of Louiset al. [16], and lines are from the DFT
method. FIG. 6. Same as Fig. 4, but for systems 7-9.
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2
0.0 7o v ooooe
1 O System 7 (MD)
05 | 0 System 1 (MD) —— System 7 (DFT)
—— System 1 (DFT) 0 R R
-1.0 t t t + +
05+ o) o System 2 (MD) |
. o i ]
- . System 2 (DFT) = 2 O System 8 (MD)
;00 o g | —— System 8 (DFT) |
e 0. w ==
0 oo
-0.5
%%
-05 2t °o° o System 9 (MD)
) o% —— System 9 (DFT)
“10l 0 System 3 (MD) | 1y %
: —— System 3 (DFT) 0 %0 .
-15 : : : : :
5 6 7 5 6 7 8 9
t/c,, 1/,
FIG. 7. The potential of mean force between two colloidal par- FIG. 9. Same as Fig. 7, but for systems 7-9.

ticles for systems 1-3. Symbols are from the published simulation
data of Louiset al. [16], and lines are from the DFT method. %
B,= 277[ drr?{1 - exg- B ()]}

Icc
in the simulations We have considere@imensionlesssol- 2 o
vent packing fractions;E, spanning the range between 0 and = —W§C+ wa drr{1 —exd—- W]}, (21
0.3. Our theoretical calculations have shown that for systems 3 occ
3, 4, 5, and 6, where the PMF is purely attractiverét
=0.1, it becomes progressively more attractive as the solvenythere the first term in the sum is the hard-sphere contribu-
density is increased. For the remaining systems, where tHéon and the second term gives the solvent-mediated contri-
PMF exhibits a repulsive barrier at close colloidal separabution to B,. The upper panel of Fig. 10 shows, as a
tions, the height of this barrier increases wif, and pro-

nounced oscillations develop at larger separations. 2f '
In order to present our results in a compact way, we now
discuss the density behavior of the colloid-colloid second
virial coefficient, which can be computed from the PMF as 1Ly System 1 ]
follows:
0 + +
0 -10 | ]
-1}
2} bu‘*—30 - g
3 0 System 4 (MD) | ' —— System 3
-4 —— System 4 (DFT) | =50 ]
-5 } } ‘e —& 5 t t
-1}
-2 4t ]
2 3 O System 5 (MD) |
@ - System 5 (DFT) —— System 7
4} 3L ystem
-5
-1} 2 . .
) 0.0 0.2 04
-< I 3
3t o System 6 (MD) | P.0s
al System 6 (DFT) | . . . .
FIG. 10. The colloid-colloid second virial coefficient as a func-
S 6 7 3 9 10 tion of dimensionless solvent density. Upper panel, system 1, sym-
1/o,, bols are from the theory of Rotét al. [9], and lines are from the
present DFT method. Middle panel, present DFT results for system
FIG. 8. Same as Fig. 7, but for systems 4—6. 3. Lower panel, present DFT results for system 7.
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function of dimensionless solvent density for system 1packing fraction, the DFT method allowed us to compute the
where all interparticle interactions are hard-sphere repuleolloid-colloid second virial coefficient as a function of the
sions. Our theoretical results are plotted as a solid line, whilsolvent density. We found that in the systems containing a
symbols denote the results of highly accurate theoreticasoft colloid-solvent repulsive tail the second virial coefficient
method due to Rotbkt al. [9], which is based on the potential decreases very steeply with density, indicating a rapidly
distribution theoreni8]. One sees that both theoretical ap- growing colloid-colloid depletion attraction. Conversely, in
proaches are in good agreement with each other. The secotite presence of a soft colloid-solvent attraction, the second
virial coefficient decreases monotonically wji, indicating  virial coefficient grows with densityalbeit much less rap-
that the effective colloidal interaction becomes more attracidly), indicating a gradually increasing repulsion through ac-
tive overall at higher densitigqglespite the increasing repul- cumulation.
sive barrier at short separationSimilar behavior ofB, is Finally, we note that the methods presented here can be
observed for system 2not shown, although the slope of easily extended to treat more complicated depletants, such as
B,(pp) is somewhat smaller, which reflects an additionalfully flexible hardcore Yukawa chains. Such polymeric de-
colloid-colloid repulsion arising from soft solvent-solvent re- pletants can display a more rich and varied behavior in com-
pulsions in system 2. parison to simple spherical solvents. This will be the subject
The middle panel of Fig. 10 showB,(p,) for system 3, of our future research.
where soft solvent-solvent attraction is added to hard-sphere
interactions. As discussed earlier, this enhances the depletion
attraction between colloids. This effect becomes more pro-
nounced with increasing solvent density. IndeBglis seen The author acknowledges financial support from the Na-
to be a rapidly decreasing function pf. Even steeper de- tional Science Foundation through Grant No. CHE-0235768.
crease of the virial coefficient with density is observed for
the systems containing a soft colloid-solvent repulgigys-
tems 4-6, essentially irrespective of the nature of the
solvent-solvent interactions. Duhet al.[19] have recently derived an approximate ana-
Finally, systems 7—9 contain a soft colloid-solvent attrac-lytic expression for the free energy of a hard-sphere Yukawa
tion, which produces an accumulation repulsion between th#uid, which is written as a sum of two terms: the hard-sphere
colloids. Again, this effect becomes stronger at higher solpart [given by Eq.(11)] and the contribution from the
vent densities, as can be seen from the lower panel of Figrukawa tail. The latter is given bj19]
10, which depictsB,(p,) for system 7. The second virial
coefficient increases monotonically with the solvent density,
indicating that the effective colloidal interaction becomes
progressively more repulsive.
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APPENDIX

dF(y)

IBftaiI_ ﬁess F(X) Fly) - (x-y)——

(A1)

wherez=« and
IV. CONCLUSION s7ss

) ) (1 +z)wPess
In this work we have presented a theoretical study of col- X=-—>%

loidal interactions in solution. We have employed a micro- z

scopic model based on hardcore Yukawa potentials, which

are composed of a hardcore repulsive wall and a soft tail. __ WBess (A3)
The latter can be either repulsive or attractive, which makes y z

it possible to tune the soft component of colloid-solvent and
solvent-solvent interactions from repulsive to attractive,
thereby tailoring the effective colloid-colloid interactions. In
order to compute the PMF between the two colloids, we used
the DFT method recently proposed by Millet al. [18],
where the excess free energy functional is split into repulsive
and attractive terms, and separate weighting functions and
weighted densities are introduced for the two contributions. @ =
We compared our theoretical results for the solvent density
profiles, the excess mean force, and the PMF with the MD
simulation data of Louigt al.[16]. The theory was shown to
be in quantitative agreement with the simulation, except for
the case when both solvent-solvent and colloid-solvent inter-
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actions contain a soft attractive component.

The major advantage of theoretical methods over com-
puter simulations is the possibility of exploring large param-
eter space much more rapidly. For example, while MD simu-
lations were performed for a single fixed value of the solvent
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we 6_7; (A8) S(2) = (1 - 7?2+ 67(1 - n)Z* + 185z~ 12(1 + 27).
@2 (A10)

Free energy given by Eq12) was compared with simu-
lation results for an extensive set of thermodynamic condi-
tions, and was shown to be accurate for both repulsive and

L(2 =124 (1 + 5/2)z+ 1 + 27], (A9) attractive hard-sphere Yukawa fluiftkl,19.
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