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The author employs density functional theory to study colloidal interactions in solution. Hardcore Yukawa
potentials with soft tails, either repulsive or attractive, are used to model colloid-solvent and solvent-solvent
interactions. We analyze the effect of these interactions on the solvent-mediated potential of mean force
between two colloids in solution. Overall, theory is shown to be in good agreement with recent simulation data.
We use the theory to study the density dependence of the colloid-colloid second virial coefficient.
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I. INTRODUCTION

Numerous systems of biological and technological inter-
est can be modeled as spherical colloidal particles dispersed
in a solution of smaller colloidal particles(depletants) [1].
Understanding of the phase behavior and stability of such
mixtures is of primary importance for the development of
various industrial applications. A common method of con-
structing phase diagrams of colloidal dispersions involves
adopting the McMillan-Mayer approach, whereby the real
two-component mixture is modeled as a pseudo-one-
component system, with colloidal particles interacting under
the effective potential of mean force(PMF) induced by the
depletant. The particular structure of the depletant-mediated
PMF is quite sensitive to the character of colloid-depletant
and depletant-depletant interactions[2]. In real systems,
these interactions can be easily adjusted by varying such pa-
rameters as salt concentration or surface charge, which
makes it possible to modify the effective PMF between the
colloidal particles. Accordingly, it is important to develop
accurate theoretical methods for calculating the effective
PMFs that would be suitable for various forms of interpar-
ticle interaction potentials.

While the majority of previous theoretical studies of col-
loidal dispersions[3–9] have focused on the hard-sphere in-
teractions(both additive and nonadditive), several workers
[10–15] have analyzed the behavior of the colloid-colloid
PMF when either attractive or repulsive soft interactions are
added to hard-core repulsions. A particularly extensive study
was performed by Louiset al. [16] who employed a micro-
scopic model based on hardcore Yukawa potentials, which
allowed them to consider various combinations of repulsive
and attractive colloid-depletant and depletant-depletant soft
interactions. These authors have performed molecular dy-
namics(MD) simulations to obtain exact results for the PMF
for each of the systems studied. The following general trends
were observed. Adding a colloid-depletant soft repulsion en-
hanced the depletion attraction between the two colloids
(which was further enhanced by the addition of depletant-
depletant soft attraction), since both these interactions reduce
the depletant density in the vicinity of the colloids. Con-
versely, adding a colloid-depletant soft attraction results in
the accumulation of the depletant around the colloids, which

makes the effective colloid-colloid PMF more repulsive.
While the addition of a soft repulsion between depletants
enhances the accumulation repulsion between colloids, the
same effect can be achieved by adding a depletant-depletant
attraction, in which case the two attractive interactions
(colloid-depletant and depletant-depletant) produce a mutu-
ally amplified enhancement of the depletant density around
the colloids[16].

While computer simulations provide a valuable tool for
obtaining exact results for the structural properties of colloi-
dal dispersions, these calculations are rather time consuming.
For the purpose of exploring the large parameter space cov-
ered by the model interaction potential parameters, it would
be more practical to employ a theoretical method to compute
the PMF. Louiset al. [16] have assessed the accuracy of two
such methods by comparing theoretical results with com-
puter simulation data. The first method is based on the Kirk-
wood superposition approximation(KSA) [6,17], where the
anisotropic depletant density profile induced by two colloids
is approximated by the product of isotropic density profiles
around individual colloids(the latter were taken directly
from computer simulations). It was found that the KSA ap-
proach yielded accurate results in the case of repulsive
colloid-depletant soft interactions(when the local density
around colloids was depleted), but broke down for attractive
interactions (when local density was enhanced). Further-
more, it is well established[6], that the quality of KSA de-
creases with increasing solvent packing fraction. The other
theoretical method tested by Louiset al. is based on the
density functional theory(DFT). They considered a particu-
lar implementation of DFT, where the hardcore Yukawa mix-
ture with repulsive/attractive soft interactions was mapped
onto an effective hard-sphere mixture, for which highly ac-
curate DFT methods are available[8]. It was found that the
mapping onto nonadditive mixtures performed well for re-
pulsive depletant-depletant interaction, but underestimated
the effective PMF for the attractive case. The performance of
the mapping procedure was especially poor when both
colloid-depletant and depletant-depletant interactions were
attractive, since the hard-sphere mapping could not capture
the nonlinear mutual enhancement of the depletant density
leading to “repulsion through attraction”[16]. Thus, neither
of the theoretical methods tested was in quantitative agree-
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ment with simulation for all systems studied, which high-
lights the necessity for developing alternative theoretical ap-
proaches to treat colloidal mixtures with soft interactions.

Quite recently, a novel method was proposed to study
structural properties of systems where both hardcore repul-
sions and soft tail attractions are present[18]. The method is
formulated within the DFT framework based on the weighted
density approximation(WDA). The excess free energy func-
tional is split into two terms corresponding to repulsive and
attractive interactions. In addition, two separate weighting
functions and weighted densities are introduced for repulsive
and attractive terms. The method was applied to study poly-
mer density profiles at surfaces and was found to be in good
agreement with simulations. We note that such approach
would be ideally suited for systems based on the Yukawa
model potentials, which naturally split into a hardcore repul-
sive wall and a soft tail(either repulsive or attractive). Fur-
thermore, a closed analytical form was recently obtained for
the Yukawa excess free energy functional[19], which was
shown to be highly accurate for both repulsive and attractive
Yukawa tails [11,19]. In the present work, we employ the
DFT method of Mülleret al. [18] to study colloidal interac-
tions in hardcore Yukawa mixtures. We show that theory is in
quantitative agreement with simulations for all systems stud-
ied by Louiset al. [16], except for the one involving both
colloid-depletant and depletant-depletant attractions. We also
perform model theoretical calculations for a wide range of
depletant packing fractions(not studied in the simulations)
and compute the density dependence of the colloid-colloid
second virial coefficient.

The remainder of the paper is organized as follows. In
Sec. II we specify our microscopic model and outline the
DFT approach employed to compute the interaction between
two dilute colloidal particles in solution. In Sec. III we com-
pare our theoretical results with computer simulations and
perform model studies of effective interactions between col-
loidal particles. In Sec. IV we conclude.

II. MICROSCOPIC MODEL AND DENSITY
FUNCTIONAL THEORY

We consider two spherical colloidal particles present at
infinite dilution in a solvent composed of spherical mol-
ecules. The diameters of colloidal and solvent(depletant)
particles are denoted byscc and sss, respectively. The sol-
vent particles interact via isotropic pairwise potential of the
hard-sphere Yukawa form,

fsssrd = Hesssss expf− ksssr − sssdg/r , r ù sss,

`, r , sss.
s1d

The colloid-solvent potential has the same functional
form, but with different parameters,

fcssrd = Hecsscs expf− kcssr − scsdg/r , r ù scs,

`, r , scs,
s2d

wherescs=sscc+sssd /2.
For the bare interaction potential between the two colloi-

dal particles we take the hard-sphere form

fccsrd = H 0, r ù scc,

`, r , scc.
s3d

The total potential of mean force(PMF) between two col-
loidal particles in solution can be written as the sum of the
bare potential and the solvent-mediated PMF,

Fccsrd = fccsrd + Wsrd. s4d

The calculation of the solvent-mediated PMFWsrd is the
main goal of the present study.

In order to obtainWsrd, we definersrW ,Rd as the condi-
tional probability of finding a solvent particle atrW given that

one colloid is at the origin and the other is located atRW . With
this definition, the solvent mediated PMF between the two
colloids is given by the following exact relations[17]:

WsRd =E
R

`

FsR8ddR8, s5d

where the excess mean force,FsRd, is given by

FsRd = −E drW f¹fcssrd · R̂grsrW;Rd, s6d

whereR̂ is the unit vector alongRW .

It is clear from the above thatRW is completely determined
by the anisotropic solvent density profile induced by the two
colloids. By treating the two colloidal particles as a source of
an external field, we can employ the standard DFT formalism
to obtain the equilibrium density profile of the fluid in an
external potential. The starting point of the DFT treatment is
the expression of the grand free energy,V, as a functional of
the solvent density profile. The minimization ofV with re-
spect torsrW ,Rd yields the equilibrium solvent density distri-
bution.

The functionalV is related to the intrinsic Helmholtz free
energy functional,F, via a Legendre transform,

VfrsrW,Rdg = FfrsrW,Rdg +E drW rsrW,RdffextsrW,Rd − mg,

s7d

wherem is the chemical potential andfextsrW ,Rd is the exter-
nal field, which in the present case is due to the interaction of

the solvent with colloidsfextsrW ,Rd=fcssrd+fcssurW−RW ud.
The intrinsic Helmholtz free energy functional can be

separated into ideal and excess parts,

FfrsrW,Rdg = FidfrsrW,Rdg + FexfrsrW,Rdg, s8d

with the ideal functional known exactly,

FidfrsrW,Rdg = b−1E drW rsrW,RdhlnfL3rsrW,Rdg − 1j, s9d

where L is the thermal de Broglie wavelength andb−1

=kBT.
Following the earlier DFT study of systems with repulsive

and attractive interactions[18], we decompose the excess
free energy functional into contributions arising from harsh
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hard-sphere repulsions and soft Yukawa tail interactions[the
latter can be either repulsive or attractive depending on the
sign of ess in Eq. (1)]:

FexfrsrW,Rdg = FhsfrsrW,Rdg + FtailfrsrW,Rdg. s10d

In the present study we obtain bothFhs and Ftail within the
weighted density approximation[20],

FhsfrsrW,Rdg =E drW rsrW,Rdfhs„r̄hssrW,Rd…, s11d

and

FtailfrsrW,Rdg =E drW rsrW,Rdf tail„r̄tailsrW,Rd…, s12d

where fhssrd and f tailsrd are the excess free energies per par-
ticle (evaluated at the fluid densityr) arising from the hard-
sphere repulsions and soft tail interactions, respectively. The
weighted densitiesr̄hssrW ,Rd andr̄tailsrW ,Rd are defined accord-
ing to

r̄hssrW,Rd =E drW8rsrW8,RdwhssurW − rW8ud s13d

and

r̄tailsrW,Rd =E drW8rsrW8,RdwtailsurW − rW8ud, s14d

with the weighting functions satisfying the normalization
condition

E drW whssrd =E drW wtailsrd = 1. s15d

We note that the form of the hard-sphere component of the
excess free energy functional, as given by Eq.(11), is due to
Tarazona[20]. While more accurate functionals are currently
available, such as the one based on the Rosenfeld’s funda-
mental measure theory(FMT) [21], for the sake of simplicity
we have restricted ourselves to the Tarazona form. A com-
parison of our theoretical results with simulation and with
FMT-based DFT calculations of Rothet al. [9] appears to
indicate that the Tarazona functional is adequate for our pur-
poses.

The minimization of the grand free energy yields the fol-
lowing result for the equilibrium solvent density profile:

rsrW;Rd = rb expf− bhfcssrd + fcssurW − RW ud + fhs„r̄hssrW,Rd…

+E drW8rsrW8,RdwhssurW − rW8udfhs8 „r̄hssrW,Rd…

+ f tail„r̄tailsrW,Rd… +E drW8rsrW8,RdwtailsurW − rW8ud

3f tail8 „r̄tailsrW,Rd… − fhssrbd − rb fhs8 srbd − f tailsrbd

− rb f tail8 srbdjg , s16d

whererb is the bulk solvent density andf8=df /dr.
In order to computersrW ;Rd from Eq. (16), it remains to

specify the free energy componentsfhssrd and f tailsrd, and

the weighting functionswhssrd and wtailsrd. For the hard-
sphere part of the free energy, we use the Carnahan-Starling
equation of state,

bfhssrd =
4h − 3h2

s1 − hd2 , s17d

where h=prsss
3 /6 is the solvent packing fraction. For the

contribution to the free energy arising from the Yukawa tail,
we use an approximate analytic expression derived by Duhet
al. [19], which was shown to provide very accurate free en-
ergy results both for repulsive and attractive hard-sphere
Yukawa fluids[11,19]. The expression forf tail obtained by
Duh et al. [19] is reproduced in the Appendix.

Regarding the choice of the weighting functions, we fol-
low the earlier density functional study, where the range of
whssrd was taken to be the solvent hard-sphere diameter,
while the range ofwtailsrd was identified with the range of the
tail of fsssrd. Accordingly, we take the simple form for
whssrd,

whssrd =
3

4psss
3 Qssss− rd, s18d

where Qsrd is the Heaviside step function. Forwtailsrd we
employ the following form:

wtailsrd =
ftailsrd

4pE
0

`

dr r2ftailsrd
, s19d

where

ftailsrd = Hfsssrd, r ù sss,

fssssssd, r , sss.
s20d

With the above choices for free energy components and
weighting functions, we solve Eq.(16) iteratively. Taking
advantage of the cylindrical symmetry of the problem, the
anisotropic solvent density profile is constructed on a two-
dimensionalsr ,ud grid, and the convolution integrals in Eq.
(16) are performed by expanding the corresponding func-
tions in Legendre polynomials. We found that using 200
polynomials was sufficient to obtain converged results. The
step size along the radial coordinate of the grid was taken to
be 0.05sss, and the total number of points along this coordi-
nate was taken to be 500. We note that the central point of
our grid sr =0d is located at the center of one of the colloidal
particles. Accordingly, the grid points withr =scs yield the
contact values of the solvent density. This is important, be-
cause in the absence of the Yukawa tail in the colloid-solvent
interaction potential, the depletion force[given by Eq.(6)] is
entirely determined by the contact density.

Once the anisotropic solvent density profile was calcu-
lated, the excess mean force between two colloidal particles
was obtained from Eq.(6), and the solvent mediated PMF
was computed from Eq.(5). In the next section, we compare
our DFT results with previously published computer simula-
tions, and present results of our model calculations.
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III. COMPARISON OF THEORY WITH SIMULATION
AND MODEL CALCULATIONS

In order to test the accuracy of the DFT treatment pre-
sented in the preceding section, we compare our theoretical
results with recently published computer simulation data of
Louis et al. [16] These authors have performed MD simula-
tions of effective forces between two dilute spherical colloi-
dal particles in a spherical solvent, with interaction potentials
given by Eqs.(1)–(3). The potential parameters used in the
simulations are listed in Table I. Three choices for both
colloid-solvent and solvent-solvent interactions were consid-
ered: pure hard-sphere repulsion, a hard-sphere repulsion
combined with a repulsive Yukawa tail, and a hard-sphere
repulsion combined with an attractive Yukawa tail. All pos-
sible combinations of these choices yield nine systems listed
in Table I. The values of remaining parameters were fixed as
follows: scc=5sss, kss=3/sss, andkcs=1.2/scs. The solvent
packing fraction in all the simulations was set to behb

*

=prbsss
3 /6=0.1.

We start by calculating the(spherically symmetric) sol-
vent density profile around asinglecolloidal particle for each
of the nine model systems. Our theoretical results together
with the simulation data[16] are shown in Figs. 1–3. One
sees that the solvent density profiles yielded by the DFT are
in good agreement with the simulation for all nine systems
studied. In particular, DFT successfully reproduces all the
trends predicted by the simulation regarding the effects of
the colloid-solvent and solvent-solvent soft repulsive and at-
tractive interactions on the accumulation of the solvent par-
ticles near the colloidal sphere. Namely, for a given colloid-
solvent interaction, a soft repulsive solvent-solvent
interaction(in addition to the hard-sphere repulsion) results
in an additional accumulation of the solvent near the colloid,
while solvent-solvent attraction produces an opposite effect.
The only exception is observed for system 9, where both
colloid-solvent and solvent-solvent interactions contain an
attractive tail. In the latter case, the contact value of the
solvent density profile at the colloidal surface is still smaller
compared to the hard-sphere solvent(in agreement with the
trend discussed above), but there is a pronounced accumula-
tion of the solvent in thesecondsolvation shell. As discussed
by Louiset al. [16], this effect is due to the mutual nonlinear
amplification of colloid-solvent and solvent-solvent attrac-

tive interactions, which makes it favorable for the solvent to
cluster near the colloid.

We now turn to the discussion of excess mean force and
solvent mediated PMF between two colloidal particles in so-
lution. The simulation[16] and theoretical results for the
forces are shown in Figs. 4–6, while the PMF results are
presented in Figs. 7–9. Once again, DFT is in good agree-
ment with simulation, with the only significant discrepancy
observed for system 9, where theory does not capture the
long range nature of the repulsive force between two col-
loids, and, as a result, somewhat underestimates the magni-
tude of the corresponding repulsive PMF(lower panels of
Figs. 6 and 9, respectively). The general trends predicted by
the simulation and successfully reproduced by the theory are
as follows. For a given solvent-solvent interaction, the addi-
tion of the soft repulsive tail to the colloid-solvent interaction
enhances attraction between the two colloids, while an at-

TABLE I. Parameter combinations for interaction potentials.

System bebs bess

1 0 0

2 0 2.99

3 0 −0.996

4 0.82 0

5 0.82 2.99

6 0.82 −0.996

7 −0.82 0

8 −0.82 2.99

9 −0.82 −0.996

FIG. 1. Normalized density profiles of solvent particles around a
single colloidal sphere for systems 1–3, with model potential pa-
rameters listed in Table I. Symbols are from the published simula-
tion data of Louiset al. [16], and lines are from the DFT method.

FIG. 2. Same as Fig. 1, but for systems 4–6.
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tractive colloid-solvent interaction increases colloid-colloid
repulsion. The former effect is due to the standard “attraction
due to depletion” mechanism, since a repulsive colloid-
solvent potential results in depleted solvent density around
the colloids(see Figs. 1–3), which enhances the attraction
between them. By contrast, the accumulation of the solvent
around “attractive” colloids leads to steric repulsion. The
same effect can be achieved for a given colloid-solvent in-
teraction by adding a soft repulsive component to the
solvent-solvent interaction, which again leads to the solvent
accumulation near the colloidal surface and the concomitant
steric repulsion between the colloids. In the latter case, the
solvent mediated PMF develops an oscillatory structure
(clearly seen in the middle panel of Fig. 7), which would
become even more pronounced at higher solvent densities.
By the same argument, one would expect that an additional

solvent-solvent attraction, which generally depletes the sol-
vent density at the colloidal surface, would induce a deple-
tion attraction between the colloids. This is indeed observed
for the cases of hard sphere and “hard sphere plus soft repul-
sion” colloid-solvent interaction potentials. The exception to
this rule is provided by system 9, where colloid-solvent in-
teraction is attractive. As already discussed above, the non-
linear mutual amplification of colloid-solvent and solvent-
solvent attractions produces solvent accumulation in the
second solvation shell around the colloids, which, in turn,
leads to an additional steric repulsion seen in the simulated
PMF (lower panel of Fig. 9). Theory does not quite capture
this subtle effect, since it misses the long-range repulsive tail
in the excess mean force(lower panel of Fig. 6).

Having ascertained the accuracy of the proposed DFT
treatment, we now use it to perform model calculations of
colloidal interactions at higher solvent densities(not studied

FIG. 3. Same as Fig. 1, but for systems 7–9.

FIG. 4. The dimensionless excess mean force between two col-
loidal particles for systems 1–3. Symbols are from the published
simulation data of Louiset al. [16], and lines are from the DFT
method.

FIG. 5. Same as Fig. 4, but for systems 4–6.

FIG. 6. Same as Fig. 4, but for systems 7–9.
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in the simulations). We have considered(dimensionless) sol-
vent packing fractionshb

* spanning the range between 0 and
0.3. Our theoretical calculations have shown that for systems
3, 4, 5, and 6, where the PMF is purely attractive athb

*

=0.1, it becomes progressively more attractive as the solvent
density is increased. For the remaining systems, where the
PMF exhibits a repulsive barrier at close colloidal separa-
tions, the height of this barrier increases withhb, and pro-
nounced oscillations develop at larger separations.

In order to present our results in a compact way, we now
discuss the density behavior of the colloid-colloid second
virial coefficient, which can be computed from the PMF as
follows:

B2 = 2pE
scc

`

dr r2h1 − expf− bFccsrdgj

=
2

3
pscc

3 + 2pE
scc

`

dr r2h1 − expf− bWsrdgj, s21d

where the first term in the sum is the hard-sphere contribu-
tion and the second term gives the solvent-mediated contri-
bution to B2. The upper panel of Fig. 10 showsB2 as a

FIG. 7. The potential of mean force between two colloidal par-
ticles for systems 1–3. Symbols are from the published simulation
data of Louiset al. [16], and lines are from the DFT method.

FIG. 8. Same as Fig. 7, but for systems 4–6.

FIG. 9. Same as Fig. 7, but for systems 7–9.

FIG. 10. The colloid-colloid second virial coefficient as a func-
tion of dimensionless solvent density. Upper panel, system 1, sym-
bols are from the theory of Rothet al. [9], and lines are from the
present DFT method. Middle panel, present DFT results for system
3. Lower panel, present DFT results for system 7.
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function of dimensionless solvent density for system 1,
where all interparticle interactions are hard-sphere repul-
sions. Our theoretical results are plotted as a solid line, while
symbols denote the results of highly accurate theoretical
method due to Rothet al. [9], which is based on the potential
distribution theorem[8]. One sees that both theoretical ap-
proaches are in good agreement with each other. The second
virial coefficient decreases monotonically withrb, indicating
that the effective colloidal interaction becomes more attrac-
tive overall at higher densities(despite the increasing repul-
sive barrier at short separations). Similar behavior ofB2 is
observed for system 2(not shown), although the slope of
B2srbd is somewhat smaller, which reflects an additional
colloid-colloid repulsion arising from soft solvent-solvent re-
pulsions in system 2.

The middle panel of Fig. 10 showsB2srbd for system 3,
where soft solvent-solvent attraction is added to hard-sphere
interactions. As discussed earlier, this enhances the depletion
attraction between colloids. This effect becomes more pro-
nounced with increasing solvent density. Indeed,B2 is seen
to be a rapidly decreasing function ofrb. Even steeper de-
crease of the virial coefficient with density is observed for
the systems containing a soft colloid-solvent repulsion(sys-
tems 4–6), essentially irrespective of the nature of the
solvent-solvent interactions.

Finally, systems 7–9 contain a soft colloid-solvent attrac-
tion, which produces an accumulation repulsion between the
colloids. Again, this effect becomes stronger at higher sol-
vent densities, as can be seen from the lower panel of Fig.
10, which depictsB2srbd for system 7. The second virial
coefficient increases monotonically with the solvent density,
indicating that the effective colloidal interaction becomes
progressively more repulsive.

IV. CONCLUSION

In this work we have presented a theoretical study of col-
loidal interactions in solution. We have employed a micro-
scopic model based on hardcore Yukawa potentials, which
are composed of a hardcore repulsive wall and a soft tail.
The latter can be either repulsive or attractive, which makes
it possible to tune the soft component of colloid-solvent and
solvent-solvent interactions from repulsive to attractive,
thereby tailoring the effective colloid-colloid interactions. In
order to compute the PMF between the two colloids, we used
the DFT method recently proposed by Mülleret al. [18],
where the excess free energy functional is split into repulsive
and attractive terms, and separate weighting functions and
weighted densities are introduced for the two contributions.
We compared our theoretical results for the solvent density
profiles, the excess mean force, and the PMF with the MD
simulation data of Louiset al. [16]. The theory was shown to
be in quantitative agreement with the simulation, except for
the case when both solvent-solvent and colloid-solvent inter-
actions contain a soft attractive component.

The major advantage of theoretical methods over com-
puter simulations is the possibility of exploring large param-
eter space much more rapidly. For example, while MD simu-
lations were performed for a single fixed value of the solvent

packing fraction, the DFT method allowed us to compute the
colloid-colloid second virial coefficient as a function of the
solvent density. We found that in the systems containing a
soft colloid-solvent repulsive tail the second virial coefficient
decreases very steeply with density, indicating a rapidly
growing colloid-colloid depletion attraction. Conversely, in
the presence of a soft colloid-solvent attraction, the second
virial coefficient grows with density(albeit much less rap-
idly), indicating a gradually increasing repulsion through ac-
cumulation.

Finally, we note that the methods presented here can be
easily extended to treat more complicated depletants, such as
fully flexible hardcore Yukawa chains. Such polymeric de-
pletants can display a more rich and varied behavior in com-
parison to simple spherical solvents. This will be the subject
of our future research.
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APPENDIX

Duh et al. [19] have recently derived an approximate ana-
lytic expression for the free energy of a hard-sphere Yukawa
fluid, which is written as a sum of two terms: the hard-sphere
part [given by Eq. (11)] and the contribution from the
Yukawa tail. The latter is given by[19]

bf tail =
a0

F0
bess−

z3

6h
FFsxd − Fsyd − sx − yd

dFsyd
dy

G ,

sA1d

wherez=ksssss and

x = −
s1 + zcdwbess

z2 , sA2d

y = −
wcbess

z
, sA3d

Fsxd = −
1

4
lns1 − 2xd − 2 lns1 − xd −

3

2
x −

1

1 − x
+ 1,

sA4d

a0 =
Lszd

z2s1 − hd2 , sA5d

F0 =
e−zLszd + Sszd

z3s1 − hd2 , sA6d

c = z2s1 − hd2 1 − e−z

e−zLszd + Sszd
− 12hs1

− hd
1 − z/2 − s1 + z/2de−z

e−zLszd + Sszd
, sA7d
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w =
6h

F0
2 , sA8d

with

Lszd = 12hfs1 + h/2dz+ 1 + 2hg, sA9d

Sszd = s1 − hd2z3 + 6hs1 − hdz2 + 18h2z− 12hs1 + 2hd.

sA10d

Free energy given by Eq.(12) was compared with simu-
lation results for an extensive set of thermodynamic condi-
tions, and was shown to be accurate for both repulsive and
attractive hard-sphere Yukawa fluids[11,19].

[1] W. B. Russel, D. A. Saville, and W. R. Schowalter,Colloidal
Dispersions(Cambridge University Press, Cambridge, 1989).

[2] L. Belloni, J. Phys.: Condens. Matter12, R549(2000).
[3] S. Asakura and F. Oosawa, J. Chem. Phys.22, 1255(1954).
[4] S. Asakura and F. Oosawa, J. Polym. Sci.33, 183 (1958).
[5] T. Biben and J. P. Hansen, Phys. Rev. Lett.66, 2215(1991).
[6] T. Biben, P. Bladon, and D. Frenkel, J. Phys.: Condens. Matter

8, 10799(1996).
[7] R. Dickman, P. Attard, and V. Simonian, J. Chem. Phys.107,

205 (1997).
[8] R. Roth, R. Evans, and S. Dietrich, Phys. Rev. E62, 5360

(2000).
[9] R. Roth, R. Evans, and A. A. Louis, Phys. Rev. E64, 051202

(2001).
[10] S. Amokrane, J. Chem. Phys.108, 7459(1998).

[11] H. H. von Grünberg and R. Klein, J. Chem. Phys.110, 5421
(1999).

[12] J. M. Mendez-Alcaraz and R. Klein, Phys. Rev. E61, 4095
(2000).

[13] S. A. Egorov and E. Rabani, J. Chem. Phys.115, 617 (2001).
[14] E. Rabani and S. A. Egorov, J. Chem. Phys.115, 3437(2001).
[15] E. Rabani and S. A. Egorov, Nano Lett.2, 69 (2002).
[16] A. A. Louis, E. Allahyarov, H. Löwen, and R. Roth, Phys.

Rev. E 65, 061407(2002).
[17] P. Attard, J. Chem. Phys.91, 3083(1989).
[18] M. Müller, L. G. MacDowell, and A. Yethiraj, J. Chem. Phys.

118, 2929(2003).
[19] D. M. Duh and L. Mier-Y-Teran, Mol. Phys.90, 373 (1997).
[20] P. Tarazona, Mol. Phys.52, 81 (1984).
[21] Y. Rosenfeld, Phys. Rev. Lett.63, 980 (1989).

S. A. EGOROV PHYSICAL REVIEW E 70, 031402(2004)

031402-8


